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COHERENT FUNCTORS, POWERS OF IDEALS, AND ASYMPTOTIC STABILITY

SOUVIK DEY, DIPANKAR GHOSH, SIDDHARTHA PRAMANIK, TONY J. PUTHENPURAKAL,
AND SAMARENDRA SAHOO

ABSTRACT. Let R be a Noetherian ring, Ii,...,I, be ideals of R, and N C M be finitely generated
R-modules. Let S = @, cnr Sn be a Noetherian standard N"-graded ring with Sp = R, and .# be a
finitely generated Z"-graded S-module. For n = (n1,...,nr) € N, set Gp := My or Gy == M/I2N,
where I* = I{Ll ... I'". Suppose F is a coherent functor on the category of finitely generated R-modules.
We prove that the set Assg (F(Gp)) of associate primes and grade (J, F(Gy)) stabilize for all n > 0,
where J is a non-zero ideal of R. Furthermore, if the length Ar(F(Grn)) is finite for all n > 0, then
there exists a polynomial P in r variables over Q such that Ag(F(Gn)) = P(n) for all n > 0. When R is
a local ring, and G, = M/I®N, we give a sharp upper bound of the total degree of P. As applications,
when R is a local ring, we show that for each fixed ¢ > 0, the ith Betti number 87 (F(Gy)) and Bass
number ufR(F(Gﬁ)) are given by polynomials in n for all n > 0. Thus, in particular, the projective
dimension pdg(F(Gr)) (resp., injective dimension id(F(Gr))) is constant for all n > 0.

1. INTRODUCTION

Let R be a (commutative) Noetherian ring, and let mod(R) denote the category of finitely generated
R-modules. Let X be a nonempty set, and {zx}rca be a sequence of elements in X indexed by a
partially ordered set A. We say that the sequence {x)}rea ‘becomes stable for all large A’ or it ‘stabilizes
asymptotically’ if there exists some A\g € A such that z) = x,, for all A > A\y. In [4], Brodmann paved the
path for studying asymptotic stability of associate primes by proving the sets Assg(I"M/I"1M) and
Assp(M/I™ M) stabilize for all n >> 0, where M € mod(R) and I is an ideal of R. In [3], Brodmann proved
that if J is an ideal of R, then both grade(J, I"M/I""1 M) and grade(.J, M /1™ M) stabilize asymptotically.
Over the years, many generalizations of these results have happened in different forms. Also, these results
of Brodmann inspired researchers to study the asymptotic behaviour of other algebraic invariants. Here,
we present a few findings that motivated us to write this article.

In [I3, Thm. 1], Melkersson-Schenzel proved that for each fixed i > 0, the sets Assg(Tory (M, R/I™))
and Assg(Tor(M, I"/I"*1)) become independent of n for all n > 0. In [II, Thm. 1.5], Kingsbury-
Sharp showed that if Iy,...,I. are ideals of R, and N,N’ € mod(R) with N’ C N, then the
set Assgp(N/I["™---I" N') becomes stable for all large (ni,...,n,). Later, in [I8 Thm. 3.5.(i)
and Cor. 3.10.(i)], West recovered the result of Kingsbury-Sharp in a direct way, and also showed
that if J is an ideal of R, then grade(J, N/I{" ---I'N) stabilizes asymptotically. Extending the
result on associate primes, Katz-West in [I0, Cor. 3.5] proved that for each fixed ¢ > 0, the
sets Assg(Exth (M, N/IT" - I N')) and Assg(Tor; (M, N/I" --- 1" N')) become stable for all large
(n1,...,m,). See [1] for a concise proof of the result of Katz-West.

In [12, Thm. 2], Kodiyalam showed that if the length Ag(M ® g N) is finite, then for every fixed ¢ > 0,
the functions Ag(Exths (M, N/I"N)) and Ag(Torf(M, N/I"N)) both become polynomials in n for all
n > 0. Theodorescu, in [I7, Cor. 4], proved the same results with a weaker condition, and gave sharp
bounds of the degree of these polynomials.

Researchers also gave a far-reaching generalization of Brodmann’s results in the context of coherent
functors. Before we come to those results, we recall the definition of coherent functors. For M € mod(R),
denote the covariant functor hps(—) := Hompg (M, —).
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Definition 1.1. ([I, p. 189] and [8, p. 53]) A covariant R-linear functor F on mod(R) is said to be
coherent if there exists an exact sequence hx — hy; — F — 0 of functors for some finitely generated
R-modules K and M.

In the setting of Abelian categories, Auslander introduced coherent functors in [I]. Later, Hartshorne
in [8] studied coherent functors on the category mod(R) in detail. The following examples of coherent
functors are known in the literature.

Example 1.2. Let M € mod(R), and C, be a chain complex of finitely generated R-modules.

(1) [8, Exam. 2.3.(a)] For each ¢ € Z, the ith homology functor H;(Ces ® g —) is coherent.

(2) [8, Exam. 2.4 and 2.5] For each i > 0, the functors Tor (M, —) and Ext% (M, —) are coherent.

(3) [15, Cor. 3.3 and Rmk. 1.10] Let I be an ideal of R. Then the Oth local cohomology functor HY(—)
with support in I is coherent if and only if I™ = I™*! for some n > 0.

(4) [15, Def. 3.9 and Cor. 3.12] Let S be a common multiplicatively closed subset of R. Then the torsion
functor 7¢(—) is coherent if and only if S is coprincipal.

(5) [2, Thm. 3.4] If F and G are two coherent functors on mod(R), then so is the composition G o F.

For a coherent functor F on mod(R), Tony Se in [I5, Thm. 1.11] proved that the sets of associate primes
Assp(F(I"M/I" 1 M)) and Assg(F(M/I"M)) and the numerical sequences grade(J, F(I"M/I"T1M))
and grade(J, F(M/I"M)) stabilize asymptotically. In [2 Thms. 2.5 and 3.5], Banda-Melkersson gave
simple proofs of these results, mainly by obtaining some properties of coherent functors. Moreover, they
showed that if Ag(F(M/I™M)) is finite for all n, then the function Ag(F'(M/I™M)) coincides with a
polynomial in n for all n > 0, cf. [2, Thm. 3.3].

Keeping all the results mentioned above in mind, we give a common generalization. In this context,
we mainly prove the following theorem.

Theorem 1.3 (See Theorem . Let R be a Noetherian ring, I, ..., I.,J be ideals of R, and N C M
be finitely generated R-modules. Suppose F is a coherent functor on the category of finitely generated
R-modules. Then both Assg(F(M/I7* ---I' N)) and grade(J, F(M/I{"* --- I N)) eventually stabilize.
Moreover, if F(M/I]"* --- I N) has finite length for all n; > 0, then Ag(F(M/I]"* ---I'" N)) is even-
tually given by a polynomial P over Q in (ni,...,n,). Furthermore, if R is a local ring, then there is a
sharp upper bound of the degree of P given by max{dim(F(M)), 3;(I) — r}, cf. Notation [2.§|

Assume that R is a local ring. Fix ¢ > 0. In [I2} Cor. 7], Kodiyalam proved that the ith Betti number
BE(M/I"M) and the ith Bass number pu% (M /1" M) are polynomials in n for all sufficiently large n. He
also provided an upper bound on the degree of these polynomials. More generally, in [2], Thm. 3.7], Banda-
Melkersson showed that Bf(F(M/I"M)) and pi(F(M/I"M)) are polynomials in n for all n > 0. As
applications of our main theorems, we prove that SF(F(M/I'--- I N)) and ph(F(M/I7t--- I N))
are eventually given by polynomials in (nq,...,n,). Moreover, there is an upper bound of the degrees of
these polynomials given by max{0, ¢;;(I) — r}, which is independent of i, F and N. Furthermore, from
these results, we deduce the asymptotic stability of certain homological invariants (namely, projective
dimension and injective dimension) in our context, see Theorem

The rest of the article is arranged as follows. In Section [2] we first observe some stability results for
the modules, which are obtained by applying a coherent functor to the components of a finitely generated
multigraded module over a Noetherian standard multigraded ring. Then, we prove a sequel of results to
provide the proof of Theorem [2.12] Section [3] contains some applications of our results.

2. MAIN RESULTS

In this section, we mainly prove Theorem [2.12] First, we prepare some results that provide the
ingredients for the proof of Theorem [2.12] To present our results better, we fix a few notations.

Notations 2.1. Let N denote the set of non-negative integers, and Z denote the set of integers. Let
r > 1 be an integer. A typical element of Z" is denoted by n := (ni,...,n,). Set 0 := (0,...,0). For
m,n € Z", define m > n if m; > n; for all 1 < i < r. By ‘for all n > 0’, we mean ‘for all n > ¢ for some
ceN"”. Forc€Zand n€Z", define cn := (cnq,...,cn,.).

Throughout the article, we work with the following setup.
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Setup 2.2. Unless specified, let R be a Noetherian ring. Denote the category of finitely generated R-
modules by mod(R). Let I, ..., I, be ideals of R. Denote I := I"* --- I where n = (ny,...,n,) € N".

We start by noting the following observation.

Theorem 2.3. Let S = @@EN" Sy be a Noetherian standard N"-graded ring with So = R. Suppose F' is
a coherent functor on mod(R). Let A = @QGZT My, be a finitely generated Z"-graded S-module. Then,
F(A) := @ﬂEZT F(A,,) is also a finitely generated Z"-graded S-module. Furthermore:

(1) The set Assg (F(.,)) stabilizes asymptotically.

(2) For any non-zero ideal J of R, the value grade (J, F(//lﬂ)) stabilizes asymptotically.

(3) If Ar (F(///Q)) is finite for all n > 0, then there exists a polynomial P in r variables over Q such
that \g (F () = P(n) for all n>> 0.

Proof. Since F' is coherent, there exist L and K in mod(R) such that hy — hx — F — 0 is an exact
sequence of functors. Thus, €, ., F(.#,) is a quotient of the finitely generated Z"-graded S-module
P,.czr hi(Ay). Hence EBnGZ:F (A,) is also a finitely generated Z"-graded S-module. Consequently,
the first two statements follow from [I8, Thm. 3.4.(i)] and [I8, Cor. 3.9.(i)] respectively. In order to prove
the third statement, assume that Ag(F(.#,)) is finite for all n > 0. Then, by (1), for all n > 0, the set
Assp(F(4,)) consists of finitely many maximal ideals of R, say my,...,m;. Then, for all n > 0, one
has that Ap(F () = Y i_y Ary, (F((#)wm,)). Thus, without loss of generality, we may assume that
R is a local ring. Then the desired result is a consequence of [5, Thm. 3.2].

]

We record the following homological lemma for future use.

Lemma 2.4. Let X,Y,Z, A, B,C and F be R-modules that fit into the following commutative diagram
of R-linear maps, where the rows and columns are exact.

Z C

’YT B

Yy —“+ B

UT J

X254 F 0
0

Then, F = ker(B)/a(ker ).

Proof. Since j is injective, it follows that A/im(6) = j(A)/im(j o #). Since jo# = « on, one has
im(j o 0) = im(aon) = a(imn) = a(ker~), where the last equality is due to the exactness of the first
column. Thus, A/im(0) = j(A)/a(kery) = ker(8)/a(kery), where the last equality follows from the
exactness of the second column. Since the last row is exact, F' = A/im(¢). This finishes the proof of the
claim. O

The following lemma is a consequence of the multigraded Artin-Rees lemma. The idea of this lemma
first appeared in the proof of [I7, Prop. 3]. The single ideal case of this lemma is shown in [I5, Cor. 2.2].
We include the proof because the construction of U in the lemma is utilized to prove our main results.

Lemma 2.5. With Setup let A 25 B Y5 Cbea complezx of modules in mod(R). Let A" C A,
B’ C B and C" C C be submodules such that ¢(A’) C B’ and w(B') C C'. Let ¢ € N", and Ay, Ay be
submodules of A such that ISA" C As. For n > ¢, let H(n) denote the homology of the induced complex
A+ 12724y 9) B ywm) C

A/ Ty T
Then, there exist d € N” such that H(n) = (U + I274V) /12 2W for all n > d, where U,V,W are some
submodules of a finitely generated R-module T' satisfying W CV and U = ker(¢)/d(A1).

(2.1)
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Proof. By the multigraded Artin-Rees lemma (cf. [I6], 17.1.6]), there exists d € N” such that d > ¢ and
Y(B)NIEC" =T124((B) NI4C") for all n > d.

It follows that ¢! (I2C”) = ker(¢)) + I27<(¢py=1(I2C")) for all n > d. Hence, for n > d,
_ ker(¢(n)) Y-t(IeC") /1B

T = o)) ~ (90 + T 2Ay) + BB/
L ker(y) +I*d(pl(I4C) U +IrY
T G(A)) + I d(Tdch(Ay) + [4B7)  Izdiy
where
_ ker(y) _ YA + ¢(Ay) _ I47¢9(Az) + 128’ + ¢(A1)
(2.2) U := S(A7)’ V= S(AD) and W := S(AD)
Note that U,V and W all are R-submodules of T := B/¢(A1). Moreover, W C V. O

In proving our next theorem, we employ techniques from [I5] Proof of Cor. 2.4]. This theorem serves
as the primary tool in the proof of Theorem [2.12

Theorem 2.6. With Setup let F' be a coherent functor on mod(R). Suppose M, N € mod(R) with
N C M. Then, there exist d € N and some submodules U, V and W of a finitely generated R-module T
such that U 2 F(M), W CV, and

M\ _U+Imdy
IoN )~ IzdW

for all n > d.

Proof. Since F' is coherent, there exist L and K in mod(R) such that hy — hx — F — 0 is an exact
sequence of functors. Then, by Yoneda lemma (cf. [14, Thm. 1.17]), the map h;, — hg is induced by an
R-module homomorphism f : K — L. By choosing free presentations of K and L, and lifting f: K — L
to these presentations, one obtains the following commutative diagram.

ROk > R®G
B v

ROk0 & 5 ROl

0 0.
By applying the functor Homp(—, M/I2N) to (2.3]), one gets the following commutative diagram.
WEL! MOk
IE(NGB&) IQ(N@’Q)
T B

MSto al M Sko
IQ(NEB%) IQ(N@k’O)

M\ M
e (ge) = ()
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where the maps f;, oy, 5,7, are induced by f, a, B, respectively. Then, Lemma yields that

ker B*
(2.4) F( M ) o o
InN a;(ker'yg)

Similarly, applying the functor Hompg(—, M) to the diagram (2.3)), one obtains the maps a*, 3*,v* induced
by a, 3,7 respectively, and the isomorphism F(M) = ker(5*)/a*(kerv*). Set A := M®% A’ .= N®%
and D’ := N9, We show that there exist some R-submodules A; and Ay of A, and ¢ € N7 satisfying
I1¢A’ C A and ker(y) = (A1 +I27€A,) /T2 A’ for all n > ¢. Note that both v*(A) and D’ are submodules
of M®% . So, by the multigraded Artin-Rees lemma ([I6] 17.1.6]), there exists ¢ € N" such that

YH(A) NIED" =T ¢(y*(A) NIED') for alln > c.

It follows that
(v)"'(I2D') = ker(y*) + I2¢((y*) "' (I12D")) for all n > c.

Set Ay :=ker(y*) and Ag := (y*)"1(I¢D’). Then I€A’ C A,. Moreover, for all n > ¢, one has that
(v)HIEDY)  ker(yt) +I2E((0) " H(IED')) Ay +IneAy

InA B In A B InA
Consequently, in view of (2.4)), F' (M JIEN ) is the homology module of the complex
A1 + IE_QAQ oy [ xer i M@ko /3_;> ]\469,fl

T2 A’ IQ(N@]CO) Iz (N®k1)7
which has the form (2.1, where B := M®%0 B’ .= N®o (O .= M®% (O = N®1 ¢(n) := o
and ¥(n) := B,. The last two maps are induced by ¢ := a*[kery+ and ¢ := * respectively. Therefore,

by Lemma there exist d € N" and some submodules U, V and W of a finitely generated R-module
T such that W C V and F(M/I2N) = (U + 124V /12~ dW for all n > d. Furthermore,

keryp  ker*  kerS”
d(A1)  a*(Ar)  ar(kervy*)
This completes the proof. O

ker('yz )=

(2.5)

U =

=~ F(M).

The following result might be known to the experts, see, e.g., [I6], Thm. 17.4.2], where it is assumed that
the base ring (R, m) is local and the ideals Iy, ..., I, are m-primary. We note that these two conditions
can be removed. Due to the lack of references, we add its proof here.

Proposition 2.7. With Setup let M € mod(R). Suppose A\g(M/I2M) is finite for alln > 0. Then
there exists a polynomial P in r variables over Q of total degree dimp(M) such that

Ar(M/I®PM) = P(n) for alln>> 0.

Proof. Since Ag(M/I2M) is finite for all n > 0, by [1I, Thm. 1.5], it follows that there exist maximal
ideals my, ..., m; of R such that Assg(M/I2M) = {my,...,m;} for all n > 0. Therefore

t
r(M/IAM) = Z R, (Mun, /T"My,,) for all n > 0.

Hence, localizing at each maximal ideal m;, and replacing Rn; by R, we may assume that the base
ring (R, m) is local. If R’ := R/anng(M), then Ag(M/I2M) = Ap/(M/I2M). So there is no harm in
assuming annp (M) = 0. It follows that
{m} = Suppp(M/I"M) = Suppp(M ®r R/T*) = Suppr(M) NV(I%) = V(I*) = | J V(1))
i=1
Thus, the ideals I, ..., I, all are m-primary, and the desired result follows from [16, Thm. 17.4.2]. ]

Notation 2.8. With Setup further assume that R is a local ring with the maximal ideal m. For
M € mod(R), let £)/(I) denote the (Krull) dimension of P, ¢y I*M/mI*M over the multigraded Rees

ring R(I) := ®QENT I2. By degree of a multivariable polynomial, we mean the total degree.
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In the following theorem, for a Z"-graded module M over an N"-graded ring S = ®QENT Sy, let
Proj(S) denote the set of all homogeneous prime ideals of S which do not contain the ideal €p,,-, Sa,
where 1 = (1,...,1), and let Supp, , (M) := Supp(M) N Proj(S). The single ideal case of the following

theorem is shown in [I7, Lem. 2].

Theorem 2.9. With Setup[2.2} let U, V and W be finitely generated submodules of an R-module T with
W CV. Set L, := (U +I2V)/I2W for all n € N". Assume that Ar(Ly,) is finite for all n > 0. Then,
there exists a polynomial P in r variables over Q such that

Ar(Ly) = P(n) for alln > 0.
Furthermore, if R is a local ring, and J C anng (V') is an ideal of R, then following Notation
deg(P) < max{dim(U), g, ;(I) —r}.

Proof. For n € N"| consider the following short exact sequence:
U+12W)NnI2v N U+12w v

| EA Y I I
All three modules in Ve finite length for all n > 0. So, it suffices to prove that the lengths of
the first two modules in (2.6) are given by polynomials in n for all n > 0. Since @, - I*V /I2W is a
finitely generated N"-graded module over the N"-graded Rees ring R(I), by [0, Thm. 4.1], A (I2V/I2W)
is given by a polynomial in n for all n > 0. Since (U + I2W) NI2V C IV, the N"-graded module

@ U+12W)nIzv
InW

(2.6) 0— — L, = 0.

neN”

is also finitely generated over R(I), and hence similar conclusion holds for its graded components. It
remains to consider the function A R((U + I2W)/ IQW). By the multigraded Artin-Rees lemma, there
exists d € N” such that
U+12w _ U B U
oW~ UNnIEW 124U N IW)
Therefore, for all n > d, one has that

U+ 12w U UNILW
2.7 A ) =dp(——— )+ Mr [———— ).
27) R( I ) R(UmIdW)+ R(I"—d(UﬁIdW))

In view of Proposition the last term of ([2.7)) is given by a polynomial in n for all n > 0. Consequently,
Ar((U +I2W)/I2W) has a polynomial behaviour for all n >> 0.
For the second part, assume that R is a local ring with the maximal ideal m. Consider an ideal

J Canng(V). Set (—) := (—) ®r R/J. From the short exact sequence (2.6)), one obtains that
(2.8) deg Ar(Ly) < max {deg Ag (U + I*W)/I*W), deg A (I*V/I2W) } .

Note that the N"-graded module €, oy I2V/I2W is finitely generated over the ring R(I). In view
of [6, Lem. 3.4.(ii)], there is some ¢ € N such that anng(IZV/IZWW) stabilizes for all n > ¢. Set
H =D, . *V/I*IV. Since H, has finite length for all n > 0, the stabilized ideal Jo := anng(Hn)
for n > ¢ is m-primary. Note that # is a finitely generated N"-graded module over the N"-graded ring
S := R(I)/JoR(I). Hence, in view of [9 Thm. 4.1 and Lem. 1.1],

for all n > d.

(2.9) deg Ar(H,) = dim (Supp++(7{)) < dim (Proj(S)) < dim(S) —r.

Since Jy is m-primary, it follows that

(2.10) dim(8) = dim (R(T)/mR(T)) = dim ( o Iﬂé/mlﬂfz) =l (1)
neNr

Now, in view of (2.7)), if UNIZW = 0, then Ag(U) < oo and deg Ag (U +I2W)/I2W) = 0 = dim(U). So,
we may assume that UNIZW £ 0. Since Ar(U/(UNILW)) < oo, one gets that Supp(UNILW) = Supp(U),
and hence dim(U NI¢W) = dim(U). Therefore, the equalities in (2.7) yield that

n d
U+1 W)degAR( Unitw

o d —
(2.11) deg A\r ( BT 40 N T9W) IdW)> dim(U NI*W) = dim(U).
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The desired bound of deg(P) follows from (2.8]), (2.9), (2.10) and (2.11). O

Combining Theorems and the eventual polynomial behaviour of Ag(F (M /IZN)) is obtained
provided that Ag(F(M/I2N)) is finite for all n > 0. Next, we show a sharp upper bound of the degree
of this polynomial which depends only on F';, M and I1,...,I,.

Theorem 2.10. With Setup let R be a local ring, and F be a coherent functor on mod(R). Suppose
M,N € mod(R) with N C M. Assume that A\g(F(M/I2N)) is finite for all n > 0. Then, following
Notation [2.8

(2.12) deg Ag(F(M/I*N)) < max{dim(F(M)), €p(I) — r},
where the inequality becomes equality if dim(F(M)) > £p(I) —r.
Proof. Set J := anng(M). We use the notations as described in Theorem 2.6} So dim(U) = dim(F(M)).
In view of the proof of Theorem note that .J annihilates every module in the complex (2.5). So .J
annihilates every subquotient of the modules in (2.5). Hence, using the description of V' given in the
proof of Lemma one gets that J C anng(V). Thus, by Theoremsand in order to establish the
inequality (2.12), it is enough to show that £z, ;(I) = £a;(I). Note that £3;(I) is the (Krull) dimension
of M =D, ey I*M/mI*M over the ring R(I), hence over the ring P, ¢y I*(R/J)/mI*(R/J). Since
= mI2(R/J) = mln + J = (InnJ) + mlz
it follows that @, ¢y (12N J) + mI%) C anng)(M). Now it is enough to prove that anng (M) is
equal to @, ¢y (1N J) +ml™) up to radical. As anngr)(M) is a homogeneous ideal of R(I), consider
a homogeneous element 2 € I™ N anng ) (M). Then M C mI™M. Hence, by the determinant trick,
x € mI™ modulo J, where the bar stands for the integral closure of mI™ in R. So there exist ¢ € N,
a; € (mI™)? for 1 < i < ¢, and y € J such that

4 a4 fa x4 a.=y.

Thus 2¢ € (I°2 N J) + mI®2. This proves our claim.
For the last part, suppose dim(F(M)) > £ (I) — r. Note that U = F(M). In view of the short exact
sequence ([2.6]), it is sufficient to prove that

| KA1 U+12w
From the proof of Theorem one observes that deg Ar(I2V/I2W) is bounded above by £z, ;(I) —r.
Since £/ (1) —r =Ly (I) — r < dim(U) = deg A ((U + I2W)/I2W), the proof is complete. O

Remark 2.11. Theorem highly generalizes the result [17, Cor. 4] of Theodorescu.

Now, we are in a position to state and prove the main results of this article.
Theorem 2.12. With Setup let F' be a coherent functor on mod(R). Suppose M, N € mod(R) with
N C M. Then, the following hold.
(1) The set Assp (F(M/I2N)) stabilizes asymptotically.
(2) For a non-zero ideal J of R, the numeric value grade (J, F(M/IEN)) stabilizes asymptotically.

(3) If \r (F(M/IQN)) is finite for allm > 0, then there exists a polynomial P in r variables over Q such
that A\g(F(M/I2N)) = P(n) for all n>> 0. In addition, if R is a local ring, with Notation
deg(P) < max{dim(F(M)),Lp (X) — r},

where the inequality becomes equality if dim(F(M)) > £y (1) — 7.
Proof. (1) In view of Theorem there exists d € N" such that

M\ _U+I*4y

N )  IndW
for some submodules U, V and W of a finitely generated R-module T with W C V. By [10, Prop. 3.4
and its proof, Assg (U + I2V)/I2W) stabilizes for all n > 0. Consequently, (1) follows.
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(2) Set Ly, := (U +I2V)/I2W for all n € N". Consider a non-zero ideal J of R. Then

L,  U+1I*V

>~

JL,  InW

)

where U := U/JU, V = (V + JU)/JU and W := (W + JV + JU)/JU are submodules of T := T/JU
with W C V. By [10, Prop. 3.4], Assg(L,/JL,) stabilizes for all n > 0. Hence, if L, = JL,, for
all n > 0, then grade (J, F(M/I:N)) = oo for all n > 0. So we may assume that L, # JL, for
all n > 0. Suppose J = (a1,...,a;). Then 0 < grade (J, F(M/I2N)) < s for all n > 0. Since the
composition of two coherent functors is coherent (cf. [2, Thm. 3.4]), the functor Ext} (R/J, F(—)) is
coherent. Therefore, by (1), the set Assp (Exty (R/J, F(M/I2N))) stabilizes for all n > 0. Denote
X; = Assg (Exty (R/J,F(M/I2N))) for all large n. Then there exists [ with 0 < I < s such that
X; # 0 and X; = () for all 0 <4 < I. Hence, since

grade (J, F(M/I2N)) = min {i : Ext}, (R/J, F(M/I®N)) # 0},

it follows that grade (J, F(M/I%N)) = [ for all large n.
(3) This simply follows by combining Theorems and O

3. APPLICATIONS

As an application of our main theorems, we prove the following result. Note that Theorem [3.1](1)
considerably strengthens both [12] Cor. 7] and [2, Thm. 3.7] in many directions.

Theorem 3.1. With Setup let R be a local ring. Suppose M, N € mod(R) with N C M. Let
S = @, cnr Sn be a Noetherian standard N"-graded ring with Sy = R, and .# be a finitely generated
7" -graded S-module. Suppose F is a coherent functor on mod(R). Denote G, := A, or G, = M/I2N
for allm € N". Then, the following hold.

1) For each fized i > 0, the functions SE(F(G,)) and ut(F(G)) are eventually given by polynomials
[ n R n

inn. When G,, ;= M/I2N, the degrees of these polynomials are bounded above by max{0, {p;(I) —r}.
(2) Both projective dimension pdg(F(Gyr)) and injective dimension idr(F(G,)) are eventually constants.

Proof. Assume k is the residue field of R. Since the composition of two coherent functors is coherent,
for each fixed 7 > 0, the functors Tor’(k, F(—)) and Ext%(k, F(—)) are also coherent. Consequently, in
view of Theorem and Theorem 7 both the functions B2 (F(G,)) = Ar(Torl(k, F(G,)))
and ph(F(G,)) = Ap(Exth(k, F(G,))) are given by polynomials in n. Since Torf(k, F(M)) and
Exth(k, F(M)) are zero-dimensional R-modules, when G, := M/I2N, Theorem ensures that
the degrees of the polynomials are bounded above by max{0,£;;(I) — r}. This proves (1). In order to
prove (2), set d := depth(R). If 8%, (F(G,)) is eventually given by a non-zero polynomial in n, then
pdg(F(Gy)) = d+1 for all n > 0, and hence by the Auslander-Buchsbaum formula, pd (F(G,)) = oo for
all . > 0. On the other hand, if 8%, | (F(Gy)) is eventually a zero polynomial in n, then pdz(F(Gy)) < d
for all n >> 0. In that case, suppose t is the largest i such that 35%(F(G,,)) is eventually a non-zero poly-
nomial in n. Then ¢ < d, and pdg(F(G,)) = ¢t for all n > 0. For every non-zero finitely generated
R-module L, note that idg(L) = d or idg(L) = co depending on whether u%™ (L) = 0 or u&™ (L) # 0
respectively. So, a similar argument using the eventual polynomial behaviour of pk(F(G,)) gives the
asymptotic stability of idg(F(G,)). O
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