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COHERENT FUNCTORS, POWERS OF IDEALS, AND ASYMPTOTIC STABILITY

SOUVIK DEY, DIPANKAR GHOSH, SIDDHARTHA PRAMANIK, TONY J. PUTHENPURAKAL,
AND SAMARENDRA SAHOO

Abstract. Let R be a Noetherian ring, I1, . . . , Ir be ideals of R, and N ⊆ M be finitely generated

R-modules. Let S =
⊕

n∈Nr Sn be a Noetherian standard Nr-graded ring with S0 = R, and M be a

finitely generated Zr-graded S-module. For n = (n1, . . . , nr) ∈ Nr, set Gn := Mn or Gn := M/InN ,
where In = In1

1 · · · Inr
r . Suppose F is a coherent functor on the category of finitely generated R-modules.

We prove that the set AssR
(
F (Gn)

)
of associate primes and grade

(
J, F (Gn)

)
stabilize for all n ≫ 0,

where J is a non-zero ideal of R. Furthermore, if the length λR(F (Gn)) is finite for all n ≫ 0, then
there exists a polynomial P in r variables over Q such that λR(F (Gn)) = P (n) for all n ≫ 0. When R is

a local ring, and Gn = M/InN , we give a sharp upper bound of the total degree of P . As applications,

when R is a local ring, we show that for each fixed i ⩾ 0, the ith Betti number βR
i (F (Gn)) and Bass

number µi
R(F (Gn)) are given by polynomials in n for all n ≫ 0. Thus, in particular, the projective

dimension pdR(F (Gn)) (resp., injective dimension idR(F (Gn))) is constant for all n ≫ 0.

1. Introduction

Let R be a (commutative) Noetherian ring, and let mod(R) denote the category of finitely generated
R-modules. Let X be a nonempty set, and {xλ}λ∈Λ be a sequence of elements in X indexed by a
partially ordered set Λ. We say that the sequence {xλ}λ∈Λ ‘becomes stable for all large λ’ or it ‘stabilizes
asymptotically’ if there exists some λ0 ∈ Λ such that xλ = xλ0 for all λ ⩾ λ0. In [4], Brodmann paved the
path for studying asymptotic stability of associate primes by proving the sets AssR(I

nM/In+1M) and
AssR(M/InM) stabilize for all n≫ 0, whereM ∈ mod(R) and I is an ideal of R. In [3], Brodmann proved
that if J is an ideal of R, then both grade(J, InM/In+1M) and grade(J,M/InM) stabilize asymptotically.
Over the years, many generalizations of these results have happened in different forms. Also, these results
of Brodmann inspired researchers to study the asymptotic behaviour of other algebraic invariants. Here,
we present a few findings that motivated us to write this article.

In [13, Thm. 1], Melkersson-Schenzel proved that for each fixed i ⩾ 0, the sets AssR(Tor
R
i (M,R/In))

and AssR(Tor
R
i (M, In/In+1)) become independent of n for all n ≫ 0. In [11, Thm. 1.5], Kingsbury-

Sharp showed that if I1, . . . , Ir are ideals of R, and N,N ′ ∈ mod(R) with N ′ ⊆ N , then the
set AssR(N/I

n1
1 · · · Inr

r N ′) becomes stable for all large (n1, . . . , nr). Later, in [18, Thm. 3.5.(i)
and Cor. 3.10.(i)], West recovered the result of Kingsbury-Sharp in a direct way, and also showed
that if J is an ideal of R, then grade(J,N/In1

1 · · · Inr
r N) stabilizes asymptotically. Extending the

result on associate primes, Katz-West in [10, Cor. 3.5] proved that for each fixed i ⩾ 0, the

sets AssR(Ext
i
R(M,N/In1

1 · · · Inr
r N ′)) and AssR(Tor

R
i (M,N/In1

1 · · · Inr
r N ′)) become stable for all large

(n1, . . . , nr). See [7] for a concise proof of the result of Katz-West.
In [12, Thm. 2], Kodiyalam showed that if the length λR(M ⊗RN) is finite, then for every fixed i ⩾ 0,

the functions λR(Ext
i
R(M,N/InN)) and λR(Tor

R
i (M,N/InN)) both become polynomials in n for all

n ≫ 0. Theodorescu, in [17, Cor. 4], proved the same results with a weaker condition, and gave sharp
bounds of the degree of these polynomials.

Researchers also gave a far-reaching generalization of Brodmann’s results in the context of coherent
functors. Before we come to those results, we recall the definition of coherent functors. ForM ∈ mod(R),
denote the covariant functor hM (−) := HomR(M,−).

Date: June 4, 2025.
2020 Mathematics Subject Classification. Primary 13D07, 13A15; Secondary 13A02, 13D02.
Key words and phrases. Coherent functors; Graded rings and modules; Associate primes; Hilbert functions, Betti and

Bass numbers.

1

https://arxiv.org/abs/2506.00529v1


2 S. DEY, D. GHOSH, S. PRAMANIK, T.J. PUTHENPURAKAL, AND S. SAHOO

Definition 1.1. ([1, p. 189] and [8, p. 53]) A covariant R-linear functor F on mod(R) is said to be
coherent if there exists an exact sequence hK → hM → F → 0 of functors for some finitely generated
R-modules K and M .

In the setting of Abelian categories, Auslander introduced coherent functors in [1]. Later, Hartshorne
in [8] studied coherent functors on the category mod(R) in detail. The following examples of coherent
functors are known in the literature.

Example 1.2. Let M ∈ mod(R), and C• be a chain complex of finitely generated R-modules.

(1) [8, Exam. 2.3.(a)] For each i ∈ Z, the ith homology functor Hi(C• ⊗R −) is coherent.

(2) [8, Exam. 2.4 and 2.5] For each i ⩾ 0, the functors TorRi (M,−) and ExtiR(M,−) are coherent.
(3) [15, Cor. 3.3 and Rmk. 1.10] Let I be an ideal of R. Then the 0th local cohomology functor H0

I (−)
with support in I is coherent if and only if In = In+1 for some n ⩾ 0.

(4) [15, Def. 3.9 and Cor. 3.12] Let S be a common multiplicatively closed subset of R. Then the torsion
functor τS(−) is coherent if and only if S is coprincipal.

(5) [2, Thm. 3.4] If F and G are two coherent functors on mod(R), then so is the composition G ◦ F .

For a coherent functor F on mod(R), Tony Se in [15, Thm. 1.11] proved that the sets of associate primes
AssR(F (I

nM/In+1M)) and AssR(F (M/InM)) and the numerical sequences grade(J, F (InM/In+1M))
and grade(J, F (M/InM)) stabilize asymptotically. In [2, Thms. 2.5 and 3.5], Banda-Melkersson gave
simple proofs of these results, mainly by obtaining some properties of coherent functors. Moreover, they
showed that if λR(F (M/InM)) is finite for all n, then the function λR(F (M/InM)) coincides with a
polynomial in n for all n≫ 0, cf. [2, Thm. 3.3].

Keeping all the results mentioned above in mind, we give a common generalization. In this context,
we mainly prove the following theorem.

Theorem 1.3 (See Theorem 2.12). Let R be a Noetherian ring, I1, . . . , Ir, J be ideals of R, and N ⊆M
be finitely generated R-modules. Suppose F is a coherent functor on the category of finitely generated
R-modules. Then both AssR(F (M/In1

1 · · · Inr
r N)) and grade(J, F (M/In1

1 · · · Inr
r N)) eventually stabilize.

Moreover, if F (M/In1
1 · · · Inr

r N) has finite length for all ni ≫ 0, then λR(F (M/In1
1 · · · Inr

r N)) is even-
tually given by a polynomial P over Q in (n1, . . . , nr). Furthermore, if R is a local ring, then there is a
sharp upper bound of the degree of P given by max{dim(F (M)), ℓM (I)− r}, cf. Notation 2.8.

Assume that R is a local ring. Fix i ⩾ 0. In [12, Cor. 7], Kodiyalam proved that the ith Betti number
βRi (M/InM) and the ith Bass number µiR(M/InM) are polynomials in n for all sufficiently large n. He
also provided an upper bound on the degree of these polynomials. More generally, in [2, Thm. 3.7], Banda-
Melkersson showed that βRi (F (M/InM)) and µiR(F (M/InM)) are polynomials in n for all n ≫ 0. As
applications of our main theorems, we prove that βRi (F (M/In1

1 · · · Inr
r N)) and µiR(F (M/In1

1 · · · Inr
r N))

are eventually given by polynomials in (n1, . . . , nr). Moreover, there is an upper bound of the degrees of
these polynomials given by max{0, ℓM (I) − r}, which is independent of i, F and N . Furthermore, from
these results, we deduce the asymptotic stability of certain homological invariants (namely, projective
dimension and injective dimension) in our context, see Theorem 3.1.

The rest of the article is arranged as follows. In Section 2, we first observe some stability results for
the modules, which are obtained by applying a coherent functor to the components of a finitely generated
multigraded module over a Noetherian standard multigraded ring. Then, we prove a sequel of results to
provide the proof of Theorem 2.12. Section 3 contains some applications of our results.

2. Main results

In this section, we mainly prove Theorem 2.12. First, we prepare some results that provide the
ingredients for the proof of Theorem 2.12. To present our results better, we fix a few notations.

Notations 2.1. Let N denote the set of non-negative integers, and Z denote the set of integers. Let
r ⩾ 1 be an integer. A typical element of Zr is denoted by n := (n1, . . . , nr). Set 0 := (0, . . . , 0). For
m,n ∈ Zr, define m ⩾ n if mi ⩾ ni for all 1 ⩽ i ⩽ r. By ‘for all n≫ 0’, we mean ‘for all n ⩾ c for some
c ∈ Nr’. For c ∈ Z and n ∈ Zr, define cn := (cn1, . . . , cnr).

Throughout the article, we work with the following setup.
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Setup 2.2. Unless specified, let R be a Noetherian ring. Denote the category of finitely generated R-
modules by mod(R). Let I1, . . . , Ir be ideals of R. Denote In := In1

1 · · · Inr
r , where n = (n1, . . . , nr) ∈ Nr.

We start by noting the following observation.

Theorem 2.3. Let S =
⊕

n∈Nr Sn be a Noetherian standard Nr-graded ring with S0 = R. Suppose F is

a coherent functor on mod(R). Let M =
⊕

n∈Zr Mn be a finitely generated Zr-graded S-module. Then,

F (M ) :=
⊕

n∈Zr F (Mn) is also a finitely generated Zr-graded S-module. Furthermore:

(1) The set AssR
(
F (Mn)

)
stabilizes asymptotically.

(2) For any non-zero ideal J of R, the value grade
(
J, F (Mn)

)
stabilizes asymptotically.

(3) If λR
(
F (Mn)

)
is finite for all n ≫ 0, then there exists a polynomial P in r variables over Q such

that λR
(
F (Mn)

)
= P (n) for all n≫ 0.

Proof. Since F is coherent, there exist L and K in mod(R) such that hL → hK → F → 0 is an exact
sequence of functors. Thus,

⊕
n∈Zr F (Mn) is a quotient of the finitely generated Zr-graded S-module⊕

n∈Zr hK(Mn). Hence
⊕

n∈Zr F (Mn) is also a finitely generated Zr-graded S-module. Consequently,

the first two statements follow from [18, Thm. 3.4.(i)] and [18, Cor. 3.9.(i)] respectively. In order to prove
the third statement, assume that λR(F (Mn)) is finite for all n≫ 0. Then, by (1), for all n≫ 0, the set
AssR(F (Mn)) consists of finitely many maximal ideals of R, say m1, . . . ,mt. Then, for all n ≫ 0, one

has that λR(F (Mn)) =
∑t
i=1 λRmi

(
F ((Mn)mi

)
)
. Thus, without loss of generality, we may assume that

R is a local ring. Then the desired result is a consequence of [5, Thm. 3.2].
□

We record the following homological lemma for future use.

Lemma 2.4. Let X,Y, Z,A,B,C and F be R-modules that fit into the following commutative diagram
of R-linear maps, where the rows and columns are exact.

Z C

Y B

X A F 0

0

γ

α

β

η

θ

j

Then, F ∼= ker(β)/α(ker γ).

Proof. Since j is injective, it follows that A/ im(θ) ∼= j(A)/ im(j ◦ θ). Since j ◦ θ = α ◦ η, one has
im(j ◦ θ) = im(α ◦ η) = α(im η) = α(ker γ), where the last equality is due to the exactness of the first
column. Thus, A/ im(θ) ∼= j(A)/α(ker γ) = ker(β)/α(ker γ), where the last equality follows from the
exactness of the second column. Since the last row is exact, F ∼= A/im(θ). This finishes the proof of the
claim. □

The following lemma is a consequence of the multigraded Artin-Rees lemma. The idea of this lemma
first appeared in the proof of [17, Prop. 3]. The single ideal case of this lemma is shown in [15, Cor. 2.2].
We include the proof because the construction of U in the lemma is utilized to prove our main results.

Lemma 2.5. With Setup 2.2, let A
ϕ−−→ B

ψ−−→ C be a complex of modules in mod(R). Let A′ ⊆ A,
B′ ⊆ B and C ′ ⊆ C be submodules such that ϕ(A′) ⊆ B′ and ψ(B′) ⊆ C ′. Let c ∈ Nr, and A1, A2 be
submodules of A such that IcA′ ⊆ A2. For n ⩾ c, let H(n) denote the homology of the induced complex

(2.1)
A1 + In−cA2

InA′
ϕ(n)−−−→ B

InB′
ψ(n)−−−→ C

InC ′ .

Then, there exist d ∈ Nr such that H(n) ∼= (U + In−dV )/In−dW for all n ⩾ d, where U, V,W are some
submodules of a finitely generated R-module T satisfying W ⊆ V and U ∼= ker(ψ)/ϕ(A1).
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Proof. By the multigraded Artin-Rees lemma (cf. [16, 17.1.6]), there exists d ∈ Nr such that d ⩾ c and

ψ(B) ∩ InC ′ = In−d
(
ψ(B) ∩ IdC ′) for all n ⩾ d.

It follows that ψ−1(InC ′) = ker(ψ) + In−d
(
ψ−1(IdC ′)

)
for all n ⩾ d. Hence, for n ⩾ d,

H(n) =
ker(ψ(n))

im(ϕ(n))
=

ψ−1(InC ′)/InB′

[ϕ(A1 + In−cA2) + InB′]/InB′

∼=
ker(ψ) + In−d

(
ψ−1(IdC ′)

)
ϕ(A1) + In−d

(
Id−cϕ(A2) + IdB′

) ∼=
U + In−dV

In−dW
,

where

(2.2) U :=
ker(ψ)

ϕ(A1)
, V :=

ψ−1(IdC ′) + ϕ(A1)

ϕ(A1)
and W :=

Id−cϕ(A2) + IdB′ + ϕ(A1)

ϕ(A1)
.

Note that U, V and W all are R-submodules of T := B/ϕ(A1). Moreover, W ⊆ V . □

In proving our next theorem, we employ techniques from [15, Proof of Cor. 2.4]. This theorem serves
as the primary tool in the proof of Theorem 2.12.

Theorem 2.6. With Setup 2.2, let F be a coherent functor on mod(R). Suppose M,N ∈ mod(R) with
N ⊆M . Then, there exist d ∈ Nr and some submodules U , V and W of a finitely generated R-module T
such that U ∼= F (M), W ⊆ V , and

F

(
M

InN

)
∼=
U + In−dV

In−dW
for all n ⩾ d.

Proof. Since F is coherent, there exist L and K in mod(R) such that hL → hK → F → 0 is an exact
sequence of functors. Then, by Yoneda lemma (cf. [14, Thm. 1.17]), the map hL → hK is induced by an
R-module homomorphism f : K → L. By choosing free presentations of K and L, and lifting f : K → L
to these presentations, one obtains the following commutative diagram.

R⊕k1 //

β
��

R⊕ℓ1

γ

��
R⊕k0 α //

��

R⊕ℓ0

��
K

f //

��

L

��
0 0.

(2.3)

By applying the functor HomR(−,M/InN) to (2.3), one gets the following commutative diagram.

M⊕ℓ1

In (N⊕ℓ1)
// M⊕k1

In (N⊕k1)

M⊕ℓ0

In (N⊕ℓ0)

γ∗
n

OO

α∗
n // M⊕k0

In (N⊕k0)

β∗
n

OO

hL

(
M

InN

)
OO

f∗
n // hK

(
M

InN

)
//

OO

F

(
M

InN

)
// 0

0

OO

0

OO
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where the maps f∗n, α
∗
n, β

∗
n, γ

∗
n are induced by f, α, β, γ respectively. Then, Lemma 2.4 yields that

(2.4) F

(
M

InN

)
∼=

kerβ∗
n

α∗
n

(
ker γ∗n

) .
Similarly, applying the functor HomR(−,M) to the diagram (2.3), one obtains the maps α∗, β∗, γ∗ induced
by α, β, γ respectively, and the isomorphism F (M) ∼= ker(β∗)/α∗(ker γ∗). Set A := M⊕ℓ0 , A′ := N⊕ℓ0

and D′ := N⊕ℓ1 . We show that there exist some R-submodules A1 and A2 of A, and c ∈ Nr satisfying
IcA′ ⊆ A2 and ker(γ∗n) = (A1+In−cA2)/I

nA′ for all n ⩾ c. Note that both γ∗(A) and D′ are submodules

of M⊕ℓ1 . So, by the multigraded Artin-Rees lemma ([16, 17.1.6]), there exists c ∈ Nr such that

γ∗(A) ∩ InD′ = In−c
(
γ∗(A) ∩ IcD′) for all n ⩾ c.

It follows that

(γ∗)−1
(
InD′) = ker(γ∗) + In−c

(
(γ∗)−1(IcD′)

)
for all n ⩾ c.

Set A1 := ker(γ∗) and A2 := (γ∗)−1(IcD′). Then IcA′ ⊆ A2. Moreover, for all n ⩾ c, one has that

ker(γ∗n) =
(γ∗)−1

(
InD′)

InA′ =
ker(γ∗) + In−c

(
(γ∗)−1(IcD′)

)
InA′ =

A1 + In−cA2

InA′ .

Consequently, in view of (2.4), F
(
M/InN

)
is the homology module of the complex

(2.5)
A1 + In−cA2

InA′

α∗
n|ker γ∗

n−−−−−−→ M⊕k0

In (N⊕k0)

β∗
n−−→ M⊕k1

In (N⊕k1)
,

which has the form (2.1), where B := M⊕k0 , B′ := N⊕k0 , C := M⊕k1 , C ′ := N⊕k1 , ϕ(n) := α∗
n|ker γ∗

n

and ψ(n) := β∗
n. The last two maps are induced by ϕ := α∗|ker γ∗ and ψ := β∗ respectively. Therefore,

by Lemma 2.5, there exist d ∈ Nr and some submodules U , V and W of a finitely generated R-module
T such that W ⊆ V and F (M/InN) ∼= (U + In−dV )/In−dW for all n ⩾ d. Furthermore,

U ∼=
kerψ

ϕ(A1)
=

kerβ∗

α∗(A1)
=

kerβ∗

α∗(ker γ∗)
∼= F (M).

This completes the proof. □

The following result might be known to the experts, see, e.g., [16, Thm. 17.4.2], where it is assumed that
the base ring (R,m) is local and the ideals I1, . . . , Ir are m-primary. We note that these two conditions
can be removed. Due to the lack of references, we add its proof here.

Proposition 2.7. With Setup 2.2, let M ∈ mod(R). Suppose λR(M/InM) is finite for all n≫ 0. Then
there exists a polynomial P in r variables over Q of total degree dimR(M) such that

λR(M/InM) = P (n) for all n≫ 0.

Proof. Since λR(M/InM) is finite for all n ≫ 0, by [11, Thm. 1.5], it follows that there exist maximal
ideals m1, . . . ,mt of R such that AssR(M/InM) = {m1, . . . ,mt} for all n≫ 0. Therefore

λR(M/InM) =

t∑
j=1

λRmj

(
Mmj/I

nMmj

)
for all n≫ 0.

Hence, localizing at each maximal ideal mj , and replacing Rmj
by R, we may assume that the base

ring (R,m) is local. If R′ := R/ annR(M), then λR(M/InM) = λR′(M/InM). So there is no harm in
assuming annR(M) = 0. It follows that

{m} = SuppR(M/InM) = SuppR(M ⊗R R/In) = SuppR(M) ∩ V (In) = V (In) =

r⋃
i=1

V (Ii).

Thus, the ideals I1, . . . , Ir all are m-primary, and the desired result follows from [16, Thm. 17.4.2]. □

Notation 2.8. With Setup 2.2, further assume that R is a local ring with the maximal ideal m. For
M ∈ mod(R), let ℓM (I) denote the (Krull) dimension of

⊕
n∈Nr InM/mInM over the multigraded Rees

ring R(I) :=
⊕

n∈Nr In. By degree of a multivariable polynomial, we mean the total degree.
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In the following theorem, for a Zr-graded module M over an Nr-graded ring S =
⊕

n∈Nr Sn, let

Proj(S) denote the set of all homogeneous prime ideals of S which do not contain the ideal
⊕

n⩾1 Sn,

where 1 = (1, . . . , 1), and let Supp++(M) := Supp(M) ∩ Proj(S). The single ideal case of the following
theorem is shown in [17, Lem. 2].

Theorem 2.9. With Setup 2.2, let U , V and W be finitely generated submodules of an R-module T with
W ⊆ V . Set Ln := (U + InV )/InW for all n ∈ Nr. Assume that λR(Ln) is finite for all n ≫ 0. Then,
there exists a polynomial P in r variables over Q such that

λR(Ln) = P (n) for all n≫ 0.

Furthermore, if R is a local ring, and J ⊆ annR(V ) is an ideal of R, then following Notation 2.8,

deg(P ) ⩽ max{dim(U), ℓR/J(I)− r}.

Proof. For n ∈ Nr, consider the following short exact sequence:

(2.6) 0 → (U + InW ) ∩ InV

InW
−→ U + InW

InW

⊕ InV

InW
−→ Ln → 0.

All three modules in (2.6) have finite length for all n ≫ 0. So, it suffices to prove that the lengths of
the first two modules in (2.6) are given by polynomials in n for all n ≫ 0. Since

⊕
n∈Nr InV /InW is a

finitely generated Nr-graded module over the Nr-graded Rees ring R(I), by [9, Thm. 4.1], λR(I
nV/InW )

is given by a polynomial in n for all n≫ 0. Since (U + InW ) ∩ InV ⊆ InV , the Nr-graded module⊕
n∈Nr

(U + InW ) ∩ InV

InW

is also finitely generated over R(I), and hence similar conclusion holds for its graded components. It
remains to consider the function λR

(
(U + InW )/InW

)
. By the multigraded Artin-Rees lemma, there

exists d ∈ Nr such that

U + InW

InW
∼=

U

U ∩ InW
=

U

In−d(U ∩ IdW )
for all n ⩾ d.

Therefore, for all n ⩾ d, one has that

(2.7) λR

(
U + InW

InW

)
= λR

(
U

U ∩ IdW

)
+ λR

(
U ∩ IdW

In−d(U ∩ IdW )

)
.

In view of Proposition 2.7, the last term of (2.7) is given by a polynomial in n for all n≫ 0. Consequently,
λR

(
(U + InW )/InW

)
has a polynomial behaviour for all n≫ 0.

For the second part, assume that R is a local ring with the maximal ideal m. Consider an ideal
J ⊆ annR(V ). Set ¯(−) := (−)⊗R R/J . From the short exact sequence (2.6), one obtains that

(2.8) deg λR(Ln) ⩽ max
{
deg λR

(
(U + InW )/InW

)
,deg λR

(
InV/InW

)}
.

Note that the Nr-graded module
⊕

n∈Nr InV /InW is finitely generated over the ring R̄(Ī). In view

of [6, Lem. 3.4.(ii)], there is some c ∈ Nr such that annR(I
nV/InW ) stabilizes for all n ⩾ c. Set

H :=
⊕

n⩾c I
nV /InW . Since Hn has finite length for all n ≫ 0, the stabilized ideal J0 := annR(Hn)

for n ⩾ c is m-primary. Note that H is a finitely generated Nr-graded module over the Nr-graded ring
S := R̄(Ī)/J̄0R̄(Ī). Hence, in view of [9, Thm. 4.1 and Lem. 1.1],

(2.9) deg λR(Hn) = dim
(
Supp++(H)

)
⩽ dim

(
Proj(S)

)
⩽ dim(S)− r.

Since J0 is m-primary, it follows that

(2.10) dim(S) = dim
(
R̄(Ī)/m̄R̄(Ī)

)
= dim

( ⊕
n∈Nr

InR̄/mInR̄
)
= ℓR/J(I).

Now, in view of (2.7), if U ∩IdW = 0, then λR(U) <∞ and deg λR
(
(U+InW )/InW

)
= 0 = dim(U). So,

we may assume that U∩IdW ̸= 0. Since λR(U/(U∩IdW )) <∞, one gets that Supp(U∩IdW ) = Supp(U),
and hence dim(U ∩ IdW ) = dim(U). Therefore, the equalities in (2.7) yield that

(2.11) deg λR

(
U + InW

InW

)
= deg λR

(
U ∩ IdW

In−d(U ∩ IdW )

)
= dim(U ∩ IdW ) = dim(U).
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The desired bound of deg(P ) follows from (2.8), (2.9), (2.10) and (2.11). □

Combining Theorems 2.6 and 2.9, the eventual polynomial behaviour of λR(F (M/InN)) is obtained
provided that λR(F (M/InN)) is finite for all n ≫ 0. Next, we show a sharp upper bound of the degree
of this polynomial which depends only on F , M and I1, . . . , Ir.

Theorem 2.10. With Setup 2.2, let R be a local ring, and F be a coherent functor on mod(R). Suppose
M,N ∈ mod(R) with N ⊆ M . Assume that λR(F (M/InN)) is finite for all n ≫ 0. Then, following
Notation 2.8,

(2.12) deg λR(F (M/InN)) ⩽ max{dim(F (M)), ℓM (I)− r},
where the inequality becomes equality if dim(F (M)) > ℓM (I)− r.

Proof. Set J := annR(M). We use the notations as described in Theorem 2.6. So dim(U) = dim(F (M)).
In view of the proof of Theorem 2.6, note that J annihilates every module in the complex (2.5). So J
annihilates every subquotient of the modules in (2.5). Hence, using the description of V given in the
proof of Lemma 2.5, one gets that J ⊆ annR(V ). Thus, by Theorems 2.6 and 2.9, in order to establish the
inequality (2.12), it is enough to show that ℓR/J(I) = ℓM (I). Note that ℓM (I) is the (Krull) dimension
of M :=

⊕
n∈Nr InM/mInM over the ring R(I), hence over the ring

⊕
n∈Nr In(R/J)/mIn(R/J). Since⊕

n∈Nr

In(R/J)

mIn(R/J)
∼=

⊕
n∈Nr

In + J

mIn + J
∼=

⊕
n∈Nr

In

(In ∩ J) +mIn
,

it follows that
⊕

n∈Nr

(
(In ∩ J) + mIn

)
⊆ annR(I)(M). Now it is enough to prove that annR(I)(M) is

equal to
⊕

n∈Nr ((In ∩ J) +mIn) up to radical. As annR(I)(M) is a homogeneous ideal of R(I), consider

a homogeneous element x ∈ Im ∩ annR(I)(M). Then xM ⊆ mImM . Hence, by the determinant trick,

x ∈ mIm modulo J , where the bar stands for the integral closure of mIm in R. So there exist c ∈ N,
ai ∈ (mIm)i for 1 ⩽ i ⩽ c, and y ∈ J such that

xc + a1x
c−1 + · · ·+ ac−1x+ ac = y.

Thus xc ∈ (Icm ∩ J) +mIcm. This proves our claim.
For the last part, suppose dim(F (M)) > ℓM (I)− r. Note that U ∼= F (M). In view of the short exact

sequence (2.6), it is sufficient to prove that

deg λR

(
InV

InW

)
< deg λR

(
U + InW

InW

)
.

From the proof of Theorem 2.9, one observes that deg λR(I
nV/InW ) is bounded above by ℓR/J(I) − r.

Since ℓR/J(I)− r = ℓM (I)− r < dim(U) = deg λR
(
(U + InW )/InW

)
, the proof is complete. □

Remark 2.11. Theorem 2.10 highly generalizes the result [17, Cor. 4] of Theodorescu.

Now, we are in a position to state and prove the main results of this article.

Theorem 2.12. With Setup 2.2, let F be a coherent functor on mod(R). Suppose M,N ∈ mod(R) with
N ⊆M . Then, the following hold.

(1) The set AssR
(
F (M/InN)

)
stabilizes asymptotically.

(2) For a non-zero ideal J of R, the numeric value grade
(
J, F (M/InN)

)
stabilizes asymptotically.

(3) If λR
(
F (M/InN)

)
is finite for all n≫ 0, then there exists a polynomial P in r variables over Q such

that λR
(
F (M/InN)

)
= P (n) for all n≫ 0. In addition, if R is a local ring, with Notation 2.8,

deg(P ) ⩽ max{dim(F (M)), ℓM (I)− r},
where the inequality becomes equality if dim(F (M)) > ℓM (I)− r.

Proof. (1) In view of Theorem 2.6 there exists d ∈ Nr such that

F

(
M

InN

)
∼=
U + In−dV

In−dW

for some submodules U , V and W of a finitely generated R-module T with W ⊆ V . By [10, Prop. 3.4]
and its proof, AssR

(
(U + InV )/InW

)
stabilizes for all n≫ 0. Consequently, (1) follows.
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(2) Set Ln := (U + InV )/InW for all n ∈ Nr. Consider a non-zero ideal J of R. Then

Ln
JLn

∼=
U + InV

InW
,

where U := U/JU , V := (V + JU)/JU and W := (W + JV + JU)/JU are submodules of T := T/JU
with W ⊆ V . By [10, Prop. 3.4], AssR(Ln/JLn) stabilizes for all n ≫ 0. Hence, if Ln = JLn for

all n ≫ 0, then grade
(
J, F (M/InN)

)
= ∞ for all n ≫ 0. So we may assume that Ln ̸= JLn for

all n ≫ 0. Suppose J = (a1, . . . , as). Then 0 ⩽ grade
(
J, F (M/InN)

)
⩽ s for all n ≫ 0. Since the

composition of two coherent functors is coherent (cf. [2, Thm. 3.4]), the functor ExtiR
(
R/J, F (−)

)
is

coherent. Therefore, by (1), the set AssR
(
ExtiR

(
R/J, F (M/InN)

))
stabilizes for all n ≫ 0. Denote

Xi := AssR
(
ExtiR

(
R/J, F (M/InN)

))
for all large n. Then there exists l with 0 ⩽ l ⩽ s such that

Xl ̸= ∅ and Xi = ∅ for all 0 ⩽ i < l. Hence, since

grade
(
J, F (M/InN)

)
= min

{
i : ExtiR

(
R/J, F (M/InN)

)
̸= 0

}
,

it follows that grade
(
J, F (M/InN)

)
= l for all large n.

(3) This simply follows by combining Theorems 2.6, 2.9 and 2.10. □

3. Applications

As an application of our main theorems, we prove the following result. Note that Theorem 3.1.(1)
considerably strengthens both [12, Cor. 7] and [2, Thm. 3.7] in many directions.

Theorem 3.1. With Setup 2.2, let R be a local ring. Suppose M,N ∈ mod(R) with N ⊆ M . Let
S =

⊕
n∈Nr Sn be a Noetherian standard Nr-graded ring with S0 = R, and M be a finitely generated

Zr-graded S-module. Suppose F is a coherent functor on mod(R). Denote Gn := Mn or Gn :=M/InN
for all n ∈ Nr. Then, the following hold.

(1) For each fixed i ⩾ 0, the functions βRi (F (Gn)) and µiR(F (Gn)) are eventually given by polynomials
in n. When Gn :=M/InN , the degrees of these polynomials are bounded above by max{0, ℓM (I)−r}.

(2) Both projective dimension pdR(F (Gn)) and injective dimension idR(F (Gn)) are eventually constants.

Proof. Assume k is the residue field of R. Since the composition of two coherent functors is coherent,
for each fixed i ⩾ 0, the functors TorRi (k, F (−)) and ExtiR(k, F (−)) are also coherent. Consequently, in

view of Theorem 2.3.(3) and Theorem 2.12.(3), both the functions βRi (F (Gn)) = λR(Tor
R
i (k, F (Gn)))

and µiR(F (Gn)) = λR(Ext
i
R(k, F (Gn))) are given by polynomials in n. Since TorRi (k, F (M)) and

ExtiR(k, F (M)) are zero-dimensional R-modules, when Gn := M/InN , Theorem 2.12.(3) ensures that
the degrees of the polynomials are bounded above by max{0, ℓM (I) − r}. This proves (1). In order to
prove (2), set d := depth(R). If βRd+1(F (Gn)) is eventually given by a non-zero polynomial in n, then
pdR(F (Gn)) ⩾ d+1 for all n≫ 0, and hence by the Auslander-Buchsbaum formula, pdR(F (Gn)) = ∞ for

all n≫ 0. On the other hand, if βRd+1(F (Gn)) is eventually a zero polynomial in n, then pdR(F (Gn)) ⩽ d

for all n≫ 0. In that case, suppose t is the largest i such that βRi (F (Gn)) is eventually a non-zero poly-
nomial in n. Then t ⩽ d, and pdR(F (Gn)) = t for all n ≫ 0. For every non-zero finitely generated

R-module L, note that idR(L) = d or idR(L) = ∞ depending on whether µd+1
R (L) = 0 or µd+1

R (L) ̸= 0
respectively. So, a similar argument using the eventual polynomial behaviour of µiR(F (Gn)) gives the
asymptotic stability of idR(F (Gn)). □
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